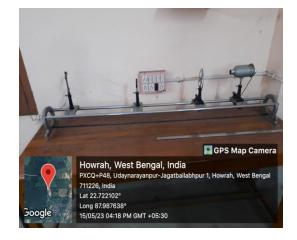
THE UDAYNARAYANPUR MADHABILATA MAHAVIDYALAYA <u>PHYSICS DEPARTMENT</u>: LAUNCHING YOUR JOURNEY INTO DISCOVERY

The Physics Department at our college fosters a vibrant community of learners dedicated to exploring the fundamental laws of the universe. We offer a comprehensive undergraduate program designed to equip you with a strong foundation in physics while igniting your passion for scientific inquiry. The Physics Department is dedicated to fostering a love for learning and a deep understanding of the physical world. We empower our students to become critical thinkers, innovative problem solvers, and future leaders in scientific discovery.


Investing in Your Future:

A Physics degree from our college equips you with a versatile skillset that opens doors to a multitude of rewarding careers. Our graduates have gone on to excel in a variety of fields:

- **Research:** Become a leading researcher at universities, government labs, or private research institutions, pushing the boundaries of scientific knowledge.
- **Engineering:** Apply your understanding of physics principles to design innovative technologies that shape the future.
- **Data Science:** Utilize your analytical and problem-solving skills to tackle complex challenges in data-driven fields like finance, healthcare, and artificial intelligence.
- Education: Inspire the next generation of scientists by becoming a physics teacher at the high school or college level.
- Entrepreneurship: Turn your passion for physics into a business venture by developing innovative products or services based on scientific principles.

Course offered: 3 year B.Sc Course

Our faculty

Soumyadev Ghosh

M.Sc(physics)

He is persuing his PhD in Experimental Material Science and Nano Science (condenced matter physics)

- > Teaching exprence More than 5 years(from 2018).
- **Research exprence More than 4 years (from 2020).**
- Contact detail(email)-ghoshsoumyadevdev@gmail.com
- Phone no- +917407657774/ +917908907253.
- > Research Gate profile link <u>https://www.researchgate.net/profile/Soumyadev-Ghosh</u>
- Scopus profile link-https://www.scopus.com/authid/detail.uri?authorId=57224780085
- > No of piblications- 3 in international Scopus journal

Publication details

- Influence of Ion Beam Irradiation on Optical and Magnetic Properties of Transparent Mn Doped ZnO Thin Films, Suitable for Sensor Applications. Swarup Kumar Neogi, Soumyadev Ghosh, Aritra Banerjee, and Sudipta Bandyopadhyay DOI 10.1149/2162-8777/ac6895, <u>https://iopscience.iop.org/article/10.1149/2162-8777/ac6895/meta</u>
- 2. Physical property modifications with transition metal doping in nanostructured Zn1-xNix O (x = 0.03, 0.05); synthesized by chemical co-precipitation technique. Soumyadev Ghosh, Subhamay Pramanik, Probodh K. Kuiri , Saikat Samantad Rupam Sen and Swarup Kumar Neogi.
 DOI 10.1088/1742-6596/2349/1/012012 , <u>https://iopscience.iop.org/article/10.1088/1742-6596/2349/1/012012</u>
 3 Synthesis of ZnO papeparticles by co-precipitation technique and characterize the
- Synthesis of ZnO nanoparticles by co-precipitation technique and characterize the structural and optical properties of these nanoparticles. Soumyadev Ghosh, Abhishek Ghosh, Subhamay Pramanik, Probodh K. Kuiri, Rupam Sen, and Swarup Kumar Neogi
 DOI 10.1088/1742-6596/2349/1/012014, <u>https://iopscience.iop.org/article/10.1088/1742-6596/2349/1/012014</u>

[DOCUMENT TITLE]

DEPARTMENT OF PHYSICS UDAYNARAYANPUR MADHABILATA MAHAVIDYALAYA

Paper: DC-1/MDC Minor-1: BASIC PHYSICS-I 50 Marks / 3 Credits						
Serial No	PAPER	UNIT	TOPIC	Mode of Teaching	TEACHER	
1.	PAPER: MDC- 1/MDC Minor- 1: BASIC PHYSICS-I	Unit-1 Mathematical Physics	. Preliminaries: SI system of units, dimensional analysis. Plotting of functions (both cartesian and polar), Limits, Intuitive ideas about continuity and differentiability of a function. Taylor series of one variable and binomial series (statements only); Maxima and minima for functions of one variable. Calculus of functions of more than one variable: Partial derivatives,	Hybrid	S.G	
			exact and inexact differentials.			
2.	PAPER: MDC- 1/MDC Minor- 1: BASIC PHYSICS-I	Unit-1 Mathematical Physics	. Ordinary Differential Equations: First order linear differential equations and integrating factor. Linear second order homogeneous equations with constant coefficients. Simple harmonic motion as an example	Hybrid	S.G	
3.	PAPER: MDC- 1/MDC Minor- 1: BASIC PHYSICS-I	Unit I: Mathematical Physics	Vectors: Dot, cross, scalar triple and vector triple products of cartesian vectors. Vector differentiation. Scalar and vector fields gradient, divergence, curl and Laplacian (for Cartesian coordinates), solenoidal and irrotational vector	Hybrid	S.G	

			field. Statement of		
			Divergence theorem		
			and Stokes' theorem;		
			application to simple		
			cases. [7 LP]		
4.	PAPER: MDC-	Unit 1:	4. Curvilinear	Lecture	S. G
	1/MDC Minor-	Mathematical	coordinates: Plane	Letture	5.0
	1: BASIC	Physics	polar, spherical polar		
	PHYSICS-I	,	and cylindrical polar		
			coordinates: their		
			unit vectors, role of		
			unit vectors as basis		
			vectors. Surface and		
			volume element		
			(from geometry).		
			Line, surface and		
			volume integrals.		
			Form of the gradient		
			operator in		
			curvilinear		
			coordinates. Velocity		
			and acceleration of		
			point particle in		
			Cartesian, plane		
			polar, spherical polar,		
			cylindrical polar		
			coordinates. [6 LP]		
<u>5</u>	PAPER: MDC-	Unit 2:	Review of Newton's	Lecture	SG
_	1/MDC Minor-	Classical	Laws: Concepts of		
	1: BASIC	Mechanics:	Inertial frames; force		
	PHYSICS-I		and mass. Galilean		
			transformations and		
			Galilean invariance;		
			Newton's laws of		
			motion, principle of		
			conservation of		
			linear momentum,		
			Simple problems		
			involving motion		
			under resistive		
			forces. Rotational		
			motion: Angular		
			velocity, angular		
			acceleration, angular		
			momentum, torque,		
			principle of		
			conservation of		
			angular momentum.		
<u>6</u>	PAPER: MDC-	Unit 2:	Work Kinetic Energy	Lecture	S. G
	1/MDC Minor-		Theorem.	& DEMONSTRATOR	

				1	1
	1: BASIC	Classical	Conservative Forces:		
	PHYSICS-I	Mechanics:	Force as the gradient		
			of a scalar field.		
			Concept of potential		
			and potential energy.		
			Other equivalent		
			definitions of a		
			conservative force.		
			Conservation of		
			energy. Qualitative		
			study of one-		
			dimensional motion		
			from potential		
			energy curves. Stable		
			and unstable		
			equilibrium. [4 LP]		
<u>7</u>	PAPER: MDC-	Unit 2:	Dynamics of a system	Hybrid	SG
	1/MDC Minor-	Classical	of particles: The		
	1: BASIC	Mechanics:	problem of solving		
	PHYSICS-I		equation of motion;		
			Actionreaction kind		
			of forces and the two		
			body problem;		
			Reduced mass &		
			centre of mass;		
			Properties of the		
			centre of mass; Effect		
			of torque; Linear		
			momentum, angular		
			momentum & total		
			energy of a system of		
			particles. [4 LP]		
7	PAPER: MDC-	Unit 2:	Central force:	Lecture	SG
	1/MDC Minor-	Classical	Newton's Law of		
	1: BASIC	Mechanics:	Gravitation; Kepler's		
	PHYSICS-I		Laws; Conservation		
			of angular		
			momentum, Gauss's		
			law for Gravitation		
			(integral form);		
			Gravitational		
			potential and		
			intensity due to		
			uniform spherical		
			shell , solid sphere of		
			uniform density and		
			infinite flat sheet.		
			Differential equation		
			for the path in a		
			central force field.		
			Motion under an		
			wouldn under an		

			inverse square force, calculation of ORBITS.		
<u>8</u>	PAPER: MDC- 1/MDC Minor- 1: BASIC PHYSICS-I	Unit 2: Classical Mechanics:	 (a) Hooke's law, elastic moduli, relation between elastic constants, Poisson's Ratio, Expression for Poisson's ratio in terms of elastic constants. (b) Twisting couple on a cylinder. Determination of Rigidity modulus by static torsion. Torsional pendulum. (c) Bending of beams, Cantilever. (d) Work done in stretching and work done in twisting a wire. 	Lecture	S. G
<u>9</u>	PAPER: MDC- 1/MDC Minor- 1: BASIC PHYSICS-I	Unit 2: Classical Mechanics:	Scattering: Two body collision and scattering [2 LP]	Lecture	S. G
<u>10</u>	PAPER: MDC- 1/MDC Minor- 1: BASIC PHYSICS-I	Unit 2: Classical Mechanics:	Mechanics of Continuum: Kinematics of Moving Fluids: Idea of compressible and incompressible fluids, Equation of continuity; streamline and turbulent flow, Reynold's number. Stokes' law from dimensional analysis; Euler's Equation and the special case of fluid statics. Simple applications (e.g: Pascal's law and Archimedes principle). Bernoulli's Theorem. [6 LP]	LECTURE	SG

1	PAPER: MDC-	Measurement of the	Practical	S.G
	1/MDC Minor-	diameter of a wire		
	1: BASIC	using screw gauge a		
	PHYSICS-I	number of times and		
	PRACTICAL	to determine the		
		mean, median, mode		
		& standard deviation		
		for study of random		
		error in observation		
<u>2</u>	PAPER: MDC-	Measurement of a	Practical	S.G
	1/MDC Minor-	suitable vertical		
	1: BASIC	height using Sextant.		
	PHYSICS-I			
	PRACTICAL			
<u>3</u>	PAPER: MDC-	Determination of the	Practical	S.G
	1/MDC Minor-	Moment of Inertia of		
	1: BASIC	a metallic cylinder /		
	PHYSICS-I	rectangular rod		
	PRACTICAL	about an axis passing		
		through its centre of		
		gravity		
<u>4</u>	PAPER: MDC-	Determination of	Practical	S.G
	1/MDC Minor-	modulus of rigidity of		
	1: BASIC	the material of a		
	PHYSICS-I	suspension wire by		
	PRACTICAL	dynamical method		
<u>5</u>	PAPER: MDC-	To determine the	Practical	S.G
	1/MDC Minor-	coefficient of		
	1: BASIC	viscosity of water by		
	PHYSICS-I	Poiseuille's method		
	PRACTICAL			

	PAPER: MDC-2/MDC Minor-2: BASIC PHYSICS - II – 50 Marks / 3 Credits						
Serial No	PAPER	UNIT	ΤΟΡΙΟ	Mode of Teaching	TEACHER		
1	PAPER: MDC- 2/MDC Minor- 2: BASIC PHYSICS – II THEORY	Unit I: Basic Electricity and Magnetism	Vector Algebra: Addition of vectors and multiplication by a scalar. Scalar and vector products of two vectors	Lecture	SG		
2	PAPER: MDC- 2/MDC Minor- 2: BASIC PHYSICS – II THEORY	Unit I Basic Electricity and Magnetism	Electrostatics: Coulomb's law, Electric field, Electric field lines. Superposition Principle. Electric	Lecture.	SG		

flux. Idea of
charge density
(linear, surface,
volume) and
continuous
charge
distributions.
Gauss' Law (in
integral form)
with applications
to charge
distributions
with spherical,
cylindrical and
planar symmetry.
Conservative
nature of
Electrostatic
Field.
Introduction to
electrostatic
potential,
Equipotential
surfaces.
Calculation of
potential for
linear, surface
and volume
charge
distributions:
simple cases
(e.g.: uniform
line charge, disc,
spherical shell,
sphere etc).
Potential and
field due to a
physical dipole;
Torque, force
and Potential
Energy of an
electric dipole in
a uniform
electric field.
Electrostatic
energy of a
system of
charges, a
charged sphere.
Conductors in an

			ala atus stati		
			electrostatic Field. Mechanical		
			force on the		
			surface of a		
			charged		
			conductor.		
			Surface charge		
			and force on a		
			conductor.		
			Capacitance of a		
			system of		
			charged		
			conductors.		
			Capacitance for		
			parallel-plate,		
			cylindrical,		
			spherical		
			capacitors		
			(without		
			dielectrics).		
			Energy stored in		
			the Electrostatic		
3		Unit 1:	field. [11 LP	Lecture &	SG
3	PAPER: MDC-	Basic Electricity	Lorentz force:	demonstrator	50
	2/MDC Minor- 2: BASIC	and Magnetism	Force on a	demonstration	
			moving charge in		
	PHYSICS – II		simultaneous electric and		
	THEORY				
			magnetic fields, force on a		
			current carrying		
			conductor in a		
			magnetic field.		
			Trajectory of		
			charged particles		
			in uniform		
			electric field,		
			crossed uniform		
			electric and		
			magnetic fields.		
			Basic principle of		
			cyclotron. [3 LP]		
4	PAPER: MDC-	Unit 2:	. Magnetostatics:	Lecture.	SG
	2/MDC Minor-	Introduction to	Concept of		
	2: BASIC	Thermodynamics	current density		
	PHYSICS – II		(linear, surface,		
	THEORY		volume).		
			Equation of		
			continuity. Biot		
			and Savart's law,		
			magnetic field		
	l	l	magnetic nelu	1	

		1	[·
		due to a straight conductor, circular coil, Helmholtz coil, solenoid. Ampere's circuital law with applications (Infinite long wire, infinite solenoid, infinite current sheet).		
		Magnetic field due to a small current loop - concept of magnetic dipole. Torque and force on magnetic dipole in a uniform magnetic field. [8		
5 PAPER: MDC- 2/MDC Minor- 2: BASIC PHYSICS – II THEORY	Unit 2: Introduction to Thermodynamics	LP] Divergence of the Electrostatic field, flux, Gauss's theorem of electrostatics, applications of Gauss theorem to find Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Gauss's theorem in dielectrics	Lecture.	SG
6 PAPER: MDC- 2/MDC Minor- 2: BASIC PHYSICS – II THEORY	Unit 2: Introduction to Thermodynamics	Curl of the Electrostatic Field. Conservative nature of electrostatic field, Introduction to	Lecture.	SG

			electriostatic potential, Calculation of potential for linear, surface and volume charge distributions, potential for a uniformly charged spherical shell and solid sphere.		
			Calculation of electric field from potential. Energy per unit volume in electrostatic field.		
7	2/MDC Minor- 2: BASIC PHYSICS – II THEORY	Unit 2. Introduction to Thermodynamics	 (a) Introduction of magnetostatics through Biot- Savart's law. Application of Biot Savart's law to determine the magnetic field of a straight conductor, circular coil, solenoid carrying current. Force between two straight current carrying wires. Lorentz force law. 	Lecture.	SG dits
1	PAPER: MDC- 2/MDC Minor- 2: BASIC PHYSICS – II	Electricity and Magnetism (Practical)	Conversion of an ammeter to voltmeter and vice versa.	Practical	SG
2	(Practical PAPER: MDC- 2/MDC Minor- 2: BASIC PHYSICS – II (Practical	Electricity and Magnetism (Practical)	Determination of an unknown low resistance using Carey-Foster's Bridge.	Practical	SG

3	PAPER: MDC- 2/MDC Minor- 2: BASIC PHYSICS – II (Practical	Electricity and Magnetism (Practical)	Measurement of current by potentiometer.	Practical	SG
4	PAPER: MDC- 2/MDC Minor- 2: BASIC PHYSICS – II (Practical	Electricity and Magnetism (Practical)	Measurement of pressure coefficient of expansion of air by Jolly's apparatus.	Practical	SG
5	PAPER: MDC- 2/MDC Minor- 2: BASIC PHYSICS – II (Practical	Electricity and Magnetism (Practical)	Measurement of coefficient of thermal expansion of a metallic rod by optical lever arrangement.	Practical	SG

Serial No	PAPER	UNIT	ΤΟΡΙΟ	Mode of Teaching	TEACHER
1.	PHS-G-CC-3-3-	Laws of	Thermodynamic	PPT	SG
	ТН	Thermodynamics	Description of		
			system: Zeroth		
			Law of		
			thermodynamics		
			and temperature.		
			First law and		
			internal energy,		
			conversion of		
			heat into work,		
			Various		
			Thermodynamical		
			Processes,		
			Applications of		
			First Law: General		
			Relation between		
			CP and CV , Work		
			Done during		
			Isothermal and		
			Adiabatic		
			Processes.		
			Compressibility		
			and Expansion		
			Coeficients,		
			Reversible and		
			irreversible		
			processes.		
2.	PHS-G-CC-3-3-	Laws of	Climate change	PPT	SG
	TH	Thermodynamics	with reference to		

			the geological time scale		
3.	PHS-G-CC-3-3- TH	Laws of Thermodynamics	Second law and Entropy, Carnot's cycle & Carnot's theorem, Entropy changes in reversible & irreversible processes, Entropy- temperature diagrams.	PPT	SG
4.	PHS-G-CC-3-3- TH	Thermodynamical Potentials	Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations and applications: Joule-Thompson Effect, Clausius- Clapeyron Equation, Expression for (CP and CV). TdS equations.	LECTURE	SG
5.	PHS-G-CC-3-3- TH	Kinetic Theory of Gases	Derivation of Maxwell's law of distribution of velocities and its experimental verication, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono- atomic and	PPT	SG
6.	PHS-G-CC-3-3- TH	Theory of Radiation	diatomic gases. Blackbody radiation, Spectral	PPT	SG

				1	
			distribution,		
			Concept of		
			Energy Density,		
			Derivation of		
			Planck's law,		
			Deduction of		
			Wien's		
			distribution law,		
			Rayleigh-Jeans		
			Law, Stefan		
			Boltzmann Law		
			and Wien's		
			displacement law		
			from Planck's law.		
7.	PHS-G-CC-3-3-	Statistical	Phase space,	LECTURE	SG
	ТН	Mechanics	Macrostate and		
			Microstate.		
			Ensemble,		
			Ergodic		
			hypothesis.		
			Entropy and		
			Thermodynamic		
			probability,		
			Boltzmann		
			hypothesis.		
			Maxwell-		
			Boltzmann law of		
			distribution of		
			velocity.		
			Quantum		
			statistics		
			(qualitative		
			discussion only).		
			Fermi-Dirac		
			distribution law		
			(statement only),		
			electron gas as an		
			example of Fermi		
			gas. BoseEinstein		
			distribution law		
			(statement only),		
			photon gas as a		
	PHS-G-CC	-3-3-P - PHS-G-CC-3		sics and Statistical M	echanics
	(Practical)				
8.	PHS-G-CC-3-3-	- Thermal	Determination of	Practical	SG
0.			the coefficient of	11000000	~~~
	Ρ	Physics and	thermal		
		Statistical	expansion of a		
		Mechanics	metalic rod using		
		(Practical)	an optical lever		
			an optical level		

9.	- PHS-G-CC-3- 3-Р	- Thermal Physics and Statistical Mechanics (Practical)	Verication of Stefan's law of radiation by the measurement of voltage and current of a torch bulb glowing it	Practical	SG
10			beyond draper point.	Dreatical	80
10.	PHS-G-CC-3-3- P	- Thermal Physics and Statistical Mechanics (Practical)	To determine Thermal coefficient of Resistance using Carey forster bridge.	Practical	SG
11.	PHS-G-CC-3-3- P	- Thermal Physics and Statistical Mechanics (Practical)	To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.	Practical	SG
12.	PHS-G-CC-3-3- P	- Thermal Physics and Statistical Mechanics (Practical)	Determination of the pressure coefficient of air using Jolly's apparatus.	Practical	SG

Serial	PAPER	UNIT	and Optics (Theory) 🗆 5	Mode of Teaching	TEACHER
No		UNII	TOTIC	Would of Teaching	IEACHEN
1.	PHS-G-CC-4-4-	Unit I:	Review of SHM,	Lecture	SG
	TH– Waves and	Accoustics	damped &		
	Optics		forced		
			vibrations:		
			amplitude and		
			velocity		
			resonance.		
			Fourier's		
			Theorem amd its		
			application for		
			some waveforms		
			e.g., Saw tooth		
			wave, triangular		
			wave, square		
			wave. Intensity		
			and loudness of		
			sound. Intensity		
			levels, Decibels.		

2		UnIT-2:	Company a sitilary of	Lecture	SG
2.	PHS-G-CC-4-4-	Superposition of	Superposition of	Lecture	50
	TH– Waves and	vibrations	Two Collinear		
	Optics	VIDIALIONS	Harmonic		
			oscillations		
			having equal		
			frequencies and		
			different		
			frequencies		
3.	PHS-G-CC-4-4-	Unit 2:	Superposition of	Lecture	SG
	TH– Waves and	Superposition of	Two		
	Optics	vibrations	Perpendicular		
			Harmonic		
			Oscillation for		
			phase difference		
			δ = 0, π 2 , π:		
			Graphical and		
			Analytical		
			Methods,		
			Lissajous Figures		
			with equal and		
			unequal		
			frequency and		
4.			their uses.	Lecture	SG
4.	PHS-G-CC-4-4-	Unit 3. Vibrations	(a) Wave	Lecture	50
	TH– Waves and	in String	equation in		
	Optics		streched string		
			and its solutions.		
			Boundary		
			conditions for		
			plucked and		
			struck strings.		
			Expression of		
			amplitude for		
			both the cases		
			(no derivation),		
			Young's law,		
			Ideal of		
			harmonics.		
			Musical scales		
			and notes.		
5.	PHS-G-CC-4-4-	Unit 4.	Definition and	Lecture	SG
	TH– Waves and	Introduction to	Properties of		
	Optics	wave Optics	wave front.		
			Huygens		
			Principle,		
			Electromagnetic		
			nature of light		
6.	PHS-G-CC-4-4-	Unit 5:	-	Lecture	SG
0.		Interference	Superposition of	Lecture	50
	TH– Waves and		two waves with		
	Optics		phase		
		1	difference,		

-		1			
			distribution of		
			energy,		
			formation of		
			fringes, visibility		
			of		
			fringes.Division		
			of amplitude		
			and division of		
			wavefront.		
			Young's Double		
			Slit experiment.		
			Lloyd's Mirror		
			and Fresnel's		
			Biprism. Phase		
			change on		
			reflection:		
			Stoke's		
			treatment.		
			Interference in		
			Thin Films:		
			parallel and		
			wedgeshaped		
			Ims. Fringes of		
			equal inclination		
			(Haidinger		
			Fringes); Fringes		
			of equal		
			thickness (Fizeau		
			Fringes).		
			Newton's Rings:		
			measurement of		
			wavelength and		
			refractive index.		
			Michelson's		
			Interferometer		
			(a) Idea of form		
			of fringes (no		
			theory needed),		
			Determination		
			of wavelength,		
			Wavelength		
			dierence,		
			Refractive index.		
7.	PHS-G-CC-4-4-	Unit 6. Diffraction	Fraunhofer	Lecture	SG
	TH– Waves and		diffraction Single		
	Optics		slit; Double Slit.		
			Multiple slits		
			and Diffraction		
			grating.		
	1	1	5 5	1	1

8.	PHS-G-CC-4-4-	Unit 6. Diffraction	Fresnel	Lecture	SG
	TH– Waves and		Diraction: Half-		
	Optics		period zones.		
	e p tite		Zone plate.		
9.	PHS-G-CC-4-4-	Unit 7.	Transverse	Lecture	SG
	TH– Waves and	Polarization	nature of light		
	Optics		waves. Plane		
			polarized light,		
			production and		
			analysis. Circular		
			, and elliptical		
			polarization.		
			Optical ac		
	PF	IS-G-CC-4-4-P – Wave		ical) 🗆 30 Marks / 2 Cre	edits
	PHS-G-CC-4-4-P	Waves and Optics	Determination	Practical	SG
	1 11J-U-CC-4-4-L	(Practical)	of the focal	i raotiour	50
			length of a		
			concave lens by		
			auxiliary lens		
			method.		
	PHS-G-CC-4-4-P	Waves and Optics	Determination	Practical	SG
		(Practical)	of the frequency		~~~
		(indecidar)	of a tuning fork		
			with the help of		
			sonometer.		
	PHS-G-CC-4-4-P	Waves and Optics	Determination	Practical	SG
		(Practical)	of radius of		
		(,	curvature of		
			plano convex		
			lens/wavelength		
			ofa		
			monochromatic		
			or quasi		
			monochromatic		
			light using		
			Newtons ring.		
	PHS-G-CC-4-4-P	Waves and Optics	Measurement of	Practical	SG
		(Practical)	thickness of a		
			paper from a		
			wedge shaped		
			film.		
	PHS-G-CC-4-4-P	Waves and Optics	Measurement of	Practical	SG
		(Practical)	specific rotation		
			of active		
			solution (e.g.,		
			sugar solution)		
			using		
			polarimeter.		

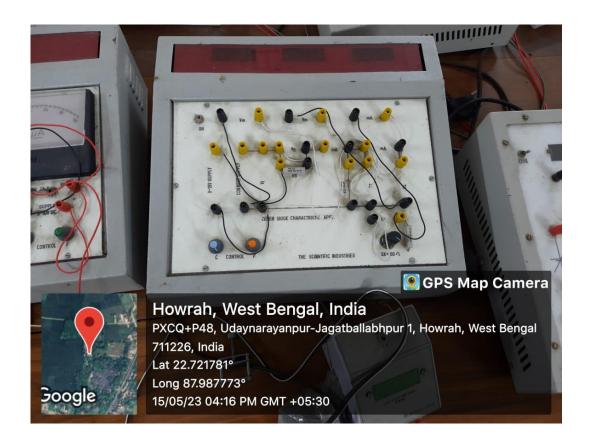
	PHS-G-DSE-A-TH – Analog Electronics (Theory) 🗆 50 Marks / 4 Credits							
Serial No	PAPER	UNIT	ΤΟΡΙΟ	Mode of Teaching	TEACHER			
1	PHS-G-DSE-A- TH – Analog Electronics	Unit 1. Circuits and Network	Discrete components, Active & Passive components, Ideal Constant voltage and Constant current Sources. Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits.	Lecture	SG			
2	PHS-G-DSE-A- TH – Analog Electronics	UnIT-2: Semiconductor Devices	 (a) Semiconductor Diodes: P and N type semiconductors. Barrier Formation in PN Junction Diode. Qualitative Idea of Current Flow Mechanism in Forward and Reverse Biased Diode. PN junction and its characteristics. Static and Dynamic Resistance. Principle and structure of • Light Emitting Diode • Photo Diode • Solar Cell (b) Application of Diode: Half- wave Rectifiers. Centre-tapped and Bridge Full- 	Lecture	SG			

			wave Rectifiers,		
			Ripple Factor		
			and		
			Rectification		
			Eciency. Basic		
			idea about		
			capacitor filter.		
			(b) Zener Diode		
			and Voltage		
			Regulation. (c)		
			Bipolar Junction		
			transistors: n-p-		
			n and p-n-p		
			Transistors.		
			Characteristics		
			of CB, CE and CC		
			Congurations.		
			Active, Cut-off &		
			Saturation		
			regions. Current		
			gains α and β .		
			Relations		
			between them.		
			Load Line		
			analysis of		
			Transistors. DC		
			Load line & Q-		
			point. Voltage		
			Divider Bias		
			Circuit for CE		
			Amplier. Class A,		
2			B & C Ampliers.	Tarta	80
3	PHS-G-DSE-A-	Unit 3.	Difference between	Lecture	SG
	TH – Analog	Regulated Power	regulated and		
	Electronics	Supply	unregulated power		
			supply. Load regulation and line		
			regulation. Zener as		
			voltage regulator.		
			Principle of series		
			regulated power		
			supply, IC controlled		
			regulated power		
			supply.		
4	PHS-G-DSE-A-	Unit 4. Field	Construction,	Lecture	SG
	TH – Analog	Effect transistors	operation,		
	Electronics		characteristics, and		
			parameters of		
			junction FET.		
			MOSFET (both		
			depletion and		
<u> </u>	1	í			1

		•			
			enhancement type)		
			as a part of MISFET.		
			Basic structure &		
			principle of		
			operations and their		
			characteristics. Pinch		
			off, threshold		
			voltage and short		
			channel effect.		
			Comparison of JFFET		
			and MOSFET.		
5	PHS-G-DSE-A-	Unit 4. Feedback	Necessity of	Lecture	SG
5	TH – Analog	Amplifiers	negative feedback	Lootaro	50
	Electronics	/ Inpiniers	for stability. Voltage		
	Lieutonics				
			series, voltage shunt, current series		
			and current shunt		
			feedback. Change in		
			•		
			input impedance,		
			output impedence,		
			voltage gain for a		
			voltage series		
			feedback in a		
			voltage amplifer.		
6	PHS-G-DSE-A-	Unit 5:	(a) Characteristics of	PPT	SG
	TH – Analog	Operational	an Ideal and		
	Electronics	Ampliers	Practical Op-Amp (IC		
			741), Open loop and		
			closed loop Gain.		
			CMRR, concept of		
			Virtual ground.		
			Applications of Op-		
			Amps • Inverting		
			and non-inverting		
			Ampliers • Inverting		
			Adder • Subtractor •		
			Differentiator •		
			Integrator • Zero		
			crossing detector		
7	PHS-G-DSE-A-	Unit 6. Sinusoidal	Barkhausen's	Lecture	SG
	TH – Analog	Oscillators:	Criterion for Self-		
	Electronics		sustained		
	_		Oscillations. Wien		
			bridge oscillator.		
	P	HS-G-DSE-A-P – Ana	log Electronics (Practica	l) 🗆 30 Marks / 2 Cree	dits
1	PHS-G-DSE-A-P	Analog	. Veryfication of	Practical	SG
1	THIS-U-DSE-A-P	Electronics	Thevenin and	i raetteat	50
		(Practical)	Norton's theorem,		
			super position		
			theorem and		

			maximum power transfer theorem for resistive network fed by D.C. power supply.		
2	PHS-G-DSE-A-P	Analog Electronics (Practical)	Study the emitter characteristics of a photo transistor illuminated by LED.	Practical	SG
3	PHS-G-DSE-A-P	Analog Electronics (Practical)	TO study the characteristics of a Transistor in CE conguration.	Practical	SG
4	PHS-G-DSE-A-P	Analog Electronics (Practical)	Construction of a regulated power supply using LM 317 IC.	Practical	SG
5	PHS-G-DSE-A-P	Analog Electronics (Practical)	To study OPAMP: inverting amplifer, non inverting amplier, adder, subtractor.	Practical	SG

	PHS-G-DSE-B-TH– Digital Electronics (Theory) 🗆 50 Marks / 4 Credits							
Serial No	PAPER	UNIT	ΤΟΡΙΟ	Mode of Teaching	TEACHER			
1	PHS-G-DSE-B- TH– Digital Electronics (Theory)	Unit 1 Integrated Circuits	Principle of Design of monolithic Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only w.r.t. micron/submicron feature length).	Lecture	SG			
2	PHS-G-DSE-B- TH– Digital Electronics (Theory)	Unit-2: Number System	Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. Signed and unsigned number representation	Lecture	SG			


3 PHS-G-DSE-B- TH-Digital Unit 3. Digital (a) Difference between Analog and Digital Circuits. (b) AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates. De Morgan's Theorems. (c) Switching Algebra: Simplication of logical expression using witching Algebra: Simplication of logical expression in (1) Sum of Product of sum term (p term and s term). Minterms and Maxterms. Conversion of a Truch Table into an algebraic expression in (1) Sum of Product of sum term form. Lecture SG 4 PHS-G-DSE-B- TH-Digital Unit 4. Data procession using Since expression using Since expression using Since expression in (1) Sum of Product of sum term form. Lecture SG		1	1	1		
TH- Digital Electronics (Theory)CircuitsDetween Analog and Digital Circuits. (b) AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates. De Morgan's Theorems. (c) Switching algebra. Fundamental Products and sum term. (b term and s term). Minterms and Maxterms. Conversion of a Truth Table into an algebraic expression in (1) Sum of Product of sum term form. Implementation of a gebraic expression in (1) Sum of Product of sum term form. Implementation of a algebraic expression in (1) Sum of Product of sum term form. Implementation of a gebraic expression in (1) Sum of Product of sum term form. Implementation of a gebraic expression from truth table using Karnaugh MapSG4PHS-G-DSE-B- TH- Digital processing circuitsUnit 4. Data processing Multiplexers, De- multiplexers, De-SG				system. Binary addition, Representation of negative number. 1's Complement and 2's Complement method of subtraction.		
4 PHS-G-DSE-B- Unit 4. Data Basic idea of Lecture SG TH- Digital processing Multiplexers, De- Electronics circuits multiplexers,	3	TH– Digital Electronics	-	between Analog and Digital Circuits. (b) AND, OR and NOT Gates (Realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates. De Morgan's Theorems. (c) Switching algebra, Simplication of logical expression using switching Algebra. Fundamental Products and sum term (p term and s term). Minterms and Maxterms. Conversion of a Truth Table into an algebraic expression in (1) Sum of Products form and (2) Product of sum term form. Implementation of a truth table by NAND or NOR gate. Simplification of algebraic expression from truth table	Lecture	SG
Electronics circuits multiplexers,	4			Basic idea of	Lecture	SG
		-				
		(Theory)		Decoders, Encoders.		

5				T to	00
5	PHS-G-DSE-B- TH– Digital Electronics (Theory)	Unit 5. Sequential Circuits:	Introduction to Next state present state table, excitation table and truth table for Sequential circuits. SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-Flops. Preset and Clear operations. Race condition in SR and Race-around conditions in JK Flip-	Lecture	SG
			Flop. M/S JK Flip-		
			Flop, T type FF.		
6	PHS-G-DSE-B- TH– Digital Electronics (Theory)	Unit 6: Registers and Counters	 (a) Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in- Parallel-out Shift Registers (only up to 4 bits). (b) Counters (4 bits): Asynchronous counters: ripple counter. Synchronous Counter, Ring counter. 	PPT	SG
		PHS-G-DSE-B-P- Dig	ital electronics (Practical)□ 30 Marks / 2 Cred	its
		T			
	PHS-G-DSE-B-P	Digital electronics (Practical)	To verify and design AND, OR, NOT and XOR gates using NAND gates	Practical	SG
	PHS-G-DSE-B-P	Digital electronics (Practical)	Construction of half adder, and full adder using NAND/NOR gate.	Practical	SG
	PHS-G-DSE-B-P	Digital electronics (Practical)	Construction of SR, D FF circuits using NAND gates.	Practical	SG
	PHS-G-DSE-B-P	Digital electronics (Practical)	Construction of 4 bit shift registers (serial & parallel) using D type FF IC 7476.	Practical	SG

PHS-G-DSE-B-P	Digital	Construction of 4 × 1	Practical	SG
	electronics	Multiplexer using IC		
	(Practical)	74151.		

Sd/

Soumyadev Ghosh Dept. of Physics

[DOCUMENT TITLE]

[Document subtitle]

DEPARTMENT OF PHYSICS UDAYNARAYANPUR MADHABILATA MAHAVIDYALAYA

		1	T		-
Serial No	PAPER	UNIT	TOPIC	Mode of Teaching	TEACHER
1.	Paper: PHS-G-	Unit-1	Vector Algebra	Hybrid	S.G
	CC-1-1-TH	Mathematical			
	Mechanics	Methods			~~~
2.	Paper: PHS-G-	Unit-1	Vector Analysis	Hybrid	S.G
	CC-1-1-TH	Mathematical			
	Mechanics	Methods			~~~
3.	Paper: PHS-G-	Unit I:	Ordinary Differential	Hybrid	S.G
	CC-1-1-TH	Mathematical	Equations:		
	Mechanics	Methods			
4.	Paper: PHS-G-	Unit 2:	Laws of Motion	Lecture	S. G
	CC-1-1-TH	Laws of			
_	Mechanics	Motion		. .	
<u>5</u>	Paper: PHS-G-	Unit 2:	Work-energy	Lecture	SG
	CC-1-1-TH	Laws of Motion	theorem.		
(Mechanics			T 4	
<u>6</u>	Paper: PHS-G-	Unit 3: Rotational	Rotation of a rigid	Lecture &	S. G
	CC-1-1-TH	Motion	body about a fixed	DEMONSTRATOR	
	Mechanics	WOUDD	axis. Angular velocity		
			and angular		
			momentum.		
			Moment of Inertia.		
			Calculation of		
			moment of inertia		
			for rectangular,		
			cylindrical and		
			spherical bodies.		
			Torque. Conservation		
			of angular		
7		TT '4 4	momentum	Hybrid	SG
<u>/</u>	Paper: PHS-G-	Unit 4: Central force	(a) Motion of a	Hybrid	3 G
	CC-1-1-TH	and	particle in a central		
	Mechanics	Gravitation	force field.		
		Gravitation	Conservation of		
			angular momentum		
			leading to restriction		
			of the motion to a		
			plane and constancy		
			of areal velocity. Kepler's Laws		
			(statement only).		
			Newton's Law of		
			Gravitation. Satellite		
			in circular orbit and		
			applications.		
			Geosynchronous		
			orbits. Basic idea of		1

Z Paper: PHS-G- CC-1-TH Mechanics Unit 3: Oscillations Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations. Lecture 8 Paper: PHS-G- CC-1-TH Mechanics Unit 6: Elasticity (a) Hooke's law, elastic moduli, relation between elastic constants, Poisson's Ratio, Expression for Poisson's ratio in terms of elastic constants. (b) Twisting couple on a cylinder. Lecture 1 2 Paper: PHS-G- CC-1-TH Mechanics Unit 7: Elasticity Molecular theory of Rigidity modulus by static torsion. Torsional pendulum. (c) Bending of beams, Cantilever. (d) Work done in stretching and work done in twisting a wire. Lecture 1 2 Paper: PHS-G- CC-1-TH Mechanics Unit 7: Surface Tension Molecular theory of surface energy, variation of surface tension between surface energy, variation of surface tension between surface energy, variation of surface tension between Lecture 1				global positioning		
Mechanics equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations Forced oscillations 8 Paper: PHS-G- CC-11-TH Mechanics Unit 6: Elasticity (a) Hooke's law, elastic moduli, relation between elastic constants, Poisson's Ratio, Expression for Poisson's ratio in terms of elastic constants. (b) Twisting couple on a cylinder. Determination of Rigidity modulus by static torsion. Torsional pendulum. (c) Bending of beams, Cantilever. (d) Work done in stretching and work done in twisting a wire. Lecture 2 Paper: PHS-G- CC-11-TH Mechanics Unit 7: Surface Tension Molecular theory of strate energy, variation of surface tension, surface energy, variation of surface tension between surface energy, variation of surface tension and surface energy, variation to spherical drops and bubbles Synclastic	<u>7</u>			-	Lecture	SG
2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Unit 7: Surface Expression of unit 7: Molecular theory of Surface tension Lecture 1 2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Elasticity Molecular theory of elastic constants, Poisson's ratio in terms of elastic constants. (b) Lecture 1 2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Elasticity Molecular theory of elastic constants. (b) Lecture 1 3 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Surface Tension Molecular theory of surface tension, surface energy, variation of surface tension and surface energy, Lecture			Oscillations			
2 Paper: PHS-G- CC-11-TH Mechanics Unit 6: Elasticity (a) Hooke's law, elastic moduli, relation between elastic constants, Poisson's ratio in terms of elastic constants. (b) Twisting couple on a cylinder. Determination of Rigidity modulus by static torsion. Torsional pendulum. (c) Bending of beams, Cantilever. (d) Work done in stretching and work done in twisting a wire. Lecture 1 2 Paper: PHS-G- CC-11-TH Mechanics Unit 7: Surface Tension Molecular theory of Surface energy, comparison between surface energy, variation of surface tension and surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic Lecture		iviecnanics				
2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 6: Elasticity (a) Hooke's law, elastic moduli, relation between elastic constants, Poisson's Ratio, Expression for Poisson's Ratio, Expression for Poisson's Ratio, Expression for Poisson's Ratio, Expression for Poisson's Constants, (b) Twisting couple on a cylinder. Determination of Rigidity modulus by static torsion. Torsional pendulum. (c) Bending of beams, Cantilever. (d) Work done in stretching and work done in twisting a wire. Lecture 2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Surface Tension Unit 7: Molecular theory of surface energy, comparison between surface energy, variation of surface tension and surface energy, variation of surface tension to spherical drops and bubbles Synclastic Lecture						
2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 6: Elasticity (a) Hooke's law, elastic moduli, relation between Lecture 1 8 Paper: PHS-G- CC-1-1-TH Mechanics Unit 6: Elasticity (a) Hooke's law, elastic moduli, relation between Lecture 1 9 Paper: PHS-G- CO-1-1-TH Mechanics Unit 7: Elasticity (a) Hooke's law, elastic moduli, relation between Lecture 1 9 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Surface Molecular theory of beams, Cantilever. (d) Work done in stretching and work done in twisting a wire. Lecture 1 2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Surface Tension Molecular theory of surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic Lecture 1						
2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 6: Elasticity (a) Hooke's law, elastic moduli, relation between elastic constants, Poisson's Ratio, Expression for Poisson's Ratio, Expre						
2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 6: Elasticity (a) Hooke's law, elastic moduli, relation between elastic constants, Poisson's ratio, Expression for Poisson's ratio in terms of elastic constants. (b) Twisting couple on a cylinder. Lecture 1 2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Surface CC-1-1-TH Unit 7: Surface Surface energy, comparison between surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic Lecture 1				_		
2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 6: Elasticity (a) Hooke's law, elastic moduli, relation between elastic constants, Poisson's Ratio, Expression for Poisson's ratio in terms of elastic constants. (b) Twisting couple on a cylinder. Lecture 1 2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Surface Tension Unit 7: Surface Molecular theory of surface energy, variation of surface tension and surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic Lecture 1				-		
Paper: PHS-G- CC-1-1-TH Unit 6: Elasticity (a) Hooke's law, elastic moduli, relation between elastic constants, Poisson's Ratio, Expression for Poisson's ratio in terms of elastic constants. (b) Twisting couple on a cylinder. Determination of Rigidity modulus by static torsion. Torsional pendulum. (c) Bending of beams, Cantilever. (d) Work done in stretching and work done in twisting a wire. Lecture I 2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Surface Tension Molecular theory of surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic Lecture I						
2 Paper: PHS-G- CC-1-1-TH Mechanics Elasticity Elastic constants, Poisson's Ratio, Expression for Poisson's Ratio, Expression for Poisson's ratio in terms of elastic constants. (b) 7 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Surface Tension Molecular theory of surface tension, surface tension, surface tension and surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic Lecture	8	Paper: PHS_G_	Unit 6:		Lecture	S. G
Mechanics relation between elastic constants, Poisson's Ratio, Expression for Poisson's ratio in terms of elastic constants. (b) Twisting couple on a cylinder. Determination of Rigidity modulus by static torsion. Torsional pendulum. (c) Bending of beams, Cantilever. (d) Work done in stretching and work done in twisting a wire. Paper: PHS-G- CC-1-1-TH Mechanics Unii 7: Surface Tension Molecular theory of surface tension, surface tension, surface tension and surface tension and surface tension and surface tension di surface tension and surface					Loome	
2 Paper: PHS-G- Unit 7: Molecular theory of beams, Cantilever. Lecture 3 2 Paper: PHS-G- Unit 7: Molecular theory of surface energy, comparison between surface energy, variation of surface energy, variation of surface energy, variation of surface tension and surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic						
2 Paper: PHS-G- Unit 7: Molecular theory of surface energy, comparison between surface energy, variation and surface energy, variation of surface tension and surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic		Wiechanics				
2Paper: PHS-G- CC-1-1-TH MechanicsUnit 7: TensionMolecular theory of surface energy, variation of surface surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlasticLecture						
2 Paper: PHS-G- Unit 7: Molecular theory of Lecture 2 Mechanics Tension Surface energy, comparison between surface energy, variation of surface tension not surface energy, variation of surface tension and surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic						
2Paper: PHS-G- CC-1-1-THUnit 7: TensionMolecular theory of surface tension, surface tension and surface tension to spherical drops and bubbles Synclastic and anticlasticLecture						
2Paper: PHS-G- CC-1-1-TH MechanicsUnit 7: TensionMolecular theory of surface energy, comparison between surface energy, variation of surface tension mith temperature, application to spherical drops and bubbles Synclastic and anticlasticLecture						
2Paper: PHS-G- CC-1-1-TH MechanicsUnit 7: TensionMolecular theory of surface energy, comparison between surface energy, variation of surface tension to spherical drops and bubbles Synclastic and anticlasticLecture3						
2 Paper: PHS-G- Unit 7: Molecular theory of Lecture 3 2 Paper: PHS-G- Unit 7: Molecular theory of Lecture 3 Mechanics Tension surface energy, comparison between surface energy, surface energy, variation of surface tension and surface energy, surface						
2 Paper: PHS-G- Unit 7: Molecular theory of Lecture Startace tension, 2 Paper: PHS-G- Unit 7: Molecular theory of Lecture Startace tension, Mechanics Tension surface tension, and surface tension and surface surface Surface surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic and anticlastic surface and anticlastic						
Paper: PHS-G- CC-1-1-THUnit 7: Surface Tension Surface energy, comparison between surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlasticLectureSurface surface surface tension				-		
2Paper: PHS-G- CC-1-1-THUnit 7: TensionMolecular theory of surface surface energy, comparison between surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlasticLecture						
2Paper: PHS-G- CC-1-1-THUnit 7: Surface TensionMolecular theory of surface tension, surface energy, comparison between surface energy, variation of surface tension and surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlasticLecture						
2Paper: PHS-G- CC-1-1-TH MechanicsUnit 7: Surface TensionMolecular theory of surface tension, surface energy, comparison between surface tension and surface tension and surface tension and surface tension and surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlasticLecture						
2Paper: PHS-G- CC-1-1-THUnit 7: SurfaceMolecular theory of surface tension, surface energy, comparison between surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlasticLecture				-		
2Paper: PHS-G- CC-1-1-THUnit 7: SurfaceMolecular theory of surface tension, surface energy, comparison between surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlasticLecture						
2Paper: PHS-G- CC-1-1-THUnit 7: SurfaceMolecular theory of surface tension, surface energy, comparison between surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlasticLecture						
2 Paper: PHS-G- CC-1-1-TH Unit 7: Molecular theory of surface tension, Lecture Surface Mechanics Tension surface energy, comparison between comparison between surface tension and surface energy, variation of surface surface Lecture Surface Surface Surface Surface Surface Surface Surface Surface Surface						
2Paper: PHS-G- CC-1-1-THUnit 7: SurfaceMolecular theory of surface tension, surface energy, comparison between surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlasticLecture				_		
2 Paper: PHS-G- CC-1-1-TH Mechanics Unit 7: Surface Molecular theory of surface tension, Lecture S Mechanics Tension surface energy, comparison between surface tension and surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic Lecture S				-		
CC-1-1-TH MechanicsSurface Tensionsurface tension, surface energy, comparison between surface tension and surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic	<u>9</u>	Paper: PHS-G-	Unit 7:		Lecture	S. G
MechanicsTensionsurface energy, comparison between surface tension and surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlasticHere application and anticlastic	-					
comparison between surface tension and surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic			Tension			
surface tension and surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic				•••		
surface energy, variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic				-		
variation of surface tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic						
tension with temperature, application to spherical drops and bubbles Synclastic and anticlastic						
temperature, application to spherical drops and bubbles Synclastic and anticlastic						
application to spherical drops and bubbles Synclastic and anticlastic						
spherical drops and bubbles Synclastic and anticlastic						
bubbles Synclastic and anticlastic						
and anticlastic						
				-		
				surface, excess of		
pressure, capilary						
rise of liquid.						

<u>1</u>	PHS-G-CC-1-1-P	Determination of	Practical	S.G
		Moment of inertia of		
		cylinder/bar about		
		axis by measuring		
		the time period, of		
		the cradle and with		
		body of known		
		moment of Inertia.		
<u>2</u>	PHS-G-CC-1-1-P	Determination of Y	Practical	S.G
		modulus of a metal		
		bar of rectangular		
		cross section by the		
		method of exure.		
<u>3</u>	PHS-G-CC-1-1-P	Determination of	Practical	S.G
		rigidity modulus of		
		wire by measuring		
		the time period of		
		torsional oscillation		
		of a metal cylinder		
		attached to it.		
<u>4</u>	PHS-G-CC-1-1-P	Determination of	Practical	S.G
		Moment of Inertia of		
		a flywheel.		
<u>5</u>	PHS-G-CC-1-1-P	Determination	Practical	S.G
		gravitational		
		acceleration, g using		
		bar pendulum.		

	PHS-G-CC-2-2-TH_ Electricity and Magnetism – 50 Marks / 4 Credits							
Serial No	PAPER	UNIT	ΤΟΡΙΟ	Mode of Teaching	TEACHER			
8.	PHS-G-CC-2-2- TH_ Electricity and Magnetism	Unit I: Essential Vector Analysis	Vector Algebra: Addition of vectors and multiplication by a scalar. Scalar and vector products of two vectors	Lecture	SG			
9.	PHS-G-CC-2-2- TH_ Electricity and Magnetism	Unit I: Essential Vector Analysis	Vector Analysis: Gradient, divergence and Curl. Vector integration, line, surface and volume integrals of vector fields. Gauss' divergence theorem and	Lecture.	SG			

			Stoke's theorem		
			of vectors		
			(Statement only)		
			and their		
10			significances.	T i o	
10.	PHS-G-CC-2-2-	Unit 2: Electrostatics	Coulombs law,	Lecture & demonstrator	SG
	TH_ Electricity	Electrostatics	principle of	demonstrator	
	and Magnetism		superposition,		
			electrostatic		
			field. Electric		
			field and charge		
			density, surface		
			and volume		
			chargev density,		
			charge density		
			on the surface of		
			a conductor.		
			Force per unit		
			area on the		
11.	PHS-G-CC-2-2-	Unit 2:	surface. Electric dipole	Lecture.	SG
11.		Electrostatics	•	Lecture.	50
	TH_ Electricity	Licenostaties	moment, electric		
	and Magnetism		potential and field due to an		
			electric dipole,		
			force and Torque		
			on a dipole.		
			Electric Fields		
			inside matter,		
			Electric		
			Polarisation,		
			bound charges,		
			displacement		
			density vector,		
			linear Dielectric		
			medium, electric		
			Succeptibility		
			and Permittivity.		
12.	PHS-G-CC-2-2-	Unit 2:	Divergence of	Lecture.	SG
	TH_Electricity	Electrostatics	the Electrostatic		
	and Magnetism		field, flux,		
			Gauss's theorem		
			of electrostatics,		
			applications of		
			Gauss theorem		
			to find Electric		
			field due to point		
			charge, infinite		
			line of charge,		
			uniformly		
			charged		

		1			I
			spherical shell		
			and solid sphere,		
			plane charged		
			sheet, charged		
			conductor.		
			Gauss's theorem		
			in dielectrics		
13.	PHS-G-CC-2-2-	Unit 2:	Curl of the	Lecture.	SG
	TH_ Electricity	Electrostatics	Electrostatic		
	and Magnetism		Field.		
			Conservative		
			nature of		
			electrostatic		
			field,		
			Introduction to		
			electriostatic		
			potential,		
			Calculation of		
			potential for		
			linear, surface		
			and volume		
			charge		
			distributions,		
			potential for a		
			uniformly		
			charged		
			spherical shell		
			and solid sphere.		
			Calculation of		
			electric field		
			from potential.		
			Energy per unit		
			volume in		
			electrostatic		
			field.		
14.	PHS-G-CC-2-2-	Unit 3. Magnetism	(a) Introduction	Lecture.	SG
	TH_ Electricity		of		
	and Magnetism		magnetostatics		
			through Biot-		
			Savart's law.		
			Application of		
			Biot Savart's law		
			to determine the		
			magnetic field of		
			a straight		
			conductor,		
			circular coil,		
			solenoid carrying		
			current. Force		
			between two		
			straight current		

			carrying wires. Lorentz force		
			law.		
15.	PHS-G-CC-2-2-	Unit 3. Magnetism	Divergence of	Lecture.	SG
	TH_ Electricity		the magnetic		
	and Magnetism		field, Magnetic		
			vector potential		
16.	PHS-G-CC-2-2-	Unit 3. Magnetism	Curl of the	Lecture.	SG
101	TH_ Electricity	ont 5. Wagnetishi	magnetic field.	20000000	20
	and Magnetism		Ampere's		
	and Magnetism		circuital law.		
			Determination of		
			the magnetic		
			field of a straight		
			current carrying		
			wire. Potential		
			and field due to a		
			magnetic dipole.		
			Magnetic dipole		
			moment. Force		
			and torque on a		
			magnetic dipole		
17.	PHS-G-CC-2-2-	Unit 3. Magnetism	Magnetic fields	Hybrid	SG
	TH_ Electricity	U U	inside matter,		
	and Magnetism		magnetization,		
			Bound currents.		
			The magnetic		
			intensity H.		
			Linear media.		
			Magnetic		
			-		
			susceptibility and		
			Permeability.		
			Brief		
			introduction of		
			dia, para and		
			ferro-magnetic		
			materials.		
18.	PHS-G-CC-2-2-	Unit 4:	Faraday's laws of	Lecture.	SG
	TH_ Electricity		electromagnetic		
	and Magnetism		induction, Lenz's		
			law, self and		
			mutual		
			inductance, L of		
			single coil, M of		
			two coils.		
19.	PHS-G-CC-2-2-	Unit 5:	Maxwell's	Lecture	SG
	TH_ Electricity		Equations,		
	and Magnetism		Equation of		
			continuity of		
			current,		
			Displacement		
			Displacement	l	L

			current,		
			electromagnetic		
			wave		
			propagation		
			through vacuum		
			and isotropic		
			dielectric		
			medium,		
			transverse		
			nature of EM		
			waves, Poynting		
			vector, decay of		
			charge in		
			conducting		
			medium.		
	PHS-G-CC-2-2-	P –Electricity and N	lagnetism (Practical)	30 Marks / 2 Credi	ts
1	PHS-G-CC-2-2-P	Electricity and	Determination	Practical	SG
	-Electricity and	Magnetism	of unknown		
	Magnetism	(Practical)	resistance by		
	(Practical)		Carey Foster		
			method.		
2	PHS-G-CC-2-2-P	Electricity and	Measurement of	Practical	SG
	-Electricity and	Magnetism	a current flowing		
	Magnetism	(Practical)	through a		
	(Practical)		register using		
			potentiometer		
3	PHS-G-CC-2-2-P	Electricity and	Determination of	Practical	SG
	-Electricity and	Magnetism	the horizontal		
	Magnetism	(Practical)	components of		
	(Practical)		earth's magnetic		
			field.		
4	PHS-G-CC-2-2-P	Electricity and	Conversion of an	Practical	SG
	-Electricity and	Magnetism	ammeter to a		
	Magnetism	(Practical)	voltmeter.		
	(Practical)				
5	PHS-G-CC-2-2-P	Electricity and	Conversion of a	Practical	SG
	-Electricity and	Magnetism	voltmeter to an		
	Magnetism	(Practical)	Ammeter		
	(Practical)				

Serial No	PAPER	UNIT	ΤΟΡΙΟ	Mode of Teaching	TEACHER
13.	PHS-G-CC-3-3- TH	Laws of Thermodynamics	Thermodynamic Description of system: Zeroth Law of thermodynamics and temperature. First law and	РРТ	SG

	1 1 🗖	1 110253	IVIAXWELLS IdW UI		1
17.	PHS-G-CC-3-3- TH	Kinetic Theory of Gases	Derivation of Maxwell's law of	РРТ	SG
17.		Kinetic Theory of	equations.	РРТ	SG
			and CV). TdS		
			Expression for (CP		
			Equation,		
			Clapeyron		
			Effect, Clausius-		
			applications: Joule-Thompson		
			relations and		
			Maxwell's		
			functions,		
			Internal Energy		
	тн	Potentials	Helmholtz and		
16.	PHS-G-CC-3-3-	Thermodynamical	Enthalpy, Gibbs,	LECTURE	SG
			diagrams.		
			temperature		
			Entropy-		
			processes,		
			reversible & irreversible		
			changes in		
			theorem, Entropy		
			cycle & Carnot's		
	ТН	Thermodynamics	Entropy, Carnot's		
15.		Laws of	Second law and	PPT	SG
			scale		
	ТН	Thermodynamics	the geological time		
14.		Laws of	Climate change with reference to	PPT	SG
			processes.		~~~
			irreversible		
			Reversible and		
			Coeficients,		
			and Expansion		
			Compressibility		
			Processes.		
			Adiabatic		
			Isothermal and		
			Done during		
			CP and CV , Work		
			Relation between		
			Applications of First Law: General		
			Processes,		
			Thermodynamical		
			Various		
			heat into work,		
			conversion of		
			internal energy,		

· · · · ·		ſ		[ı
			velocities and its		
			experimental		
			verication, Mean		
			free path (Zeroth		
			Order), Transport		
			Phenomena:		
			Viscosity,		
			Conduction and		
			Diffusion (for		
			vertical case),		
			Law of		
			equipartition of		
			energy (no		
			derivation) and		
			its applications to		
			specific heat of		
			gases; mono-		
			atomic and		
			diatomic gases.		
18.		Theory of	-	РРТ	SG
10.	PHS-G-CC-3-3-	Theory of Radiation	Blackbody	111	νc
	TH	Radiation	radiation,		
			Spectral		
			distribution,		
			Concept of		
			Energy Density,		
			Derivation of		
			Planck's law,		
			Deduction of		
			Wien's		
			distribution law,		
			Rayleigh-Jeans		
			Law, Stefan		
			Boltzmann Law		
			and Wien's		
			displacement law		
			from Planck's law.		
19.	PHS-G-CC-3-3-	Statistical	Phase space,	LECTURE	SG
	TH	Mechanics	Macrostate and		
			Microstate.		
			Ensemble,		
			Ergodic		
			hypothesis.		
			Entropy and		
			Thermodynamic		
			probability,		
			Boltzmann		
			hypothesis.		
			Maxwell-		
			Boltzmann law of		
			distribution of		
			velocity.		

							—T
Quantum							
statistics							
(qualitative			• •				
discussion only).							
Fermi-Dirac							
distribution law			distribution law				
(statement only),			(statement only),				
electron gas as an			electron gas as an				
example of Fermi			example of Fermi				
gas. BoseEinstein			gas. BoseEinstein				
distribution law			distribution law				
(statement only),			(statement only),				
photon gas as a			photon gas as a				
PHS-G-CC-3-3-P - PHS-G-CC-3-3-P- Thermal Physics and Statistical Mechanics	ical Mechanics	sics and Statistical	3-3-P- Thermal Phys	-3-3-P - PHS-G-CC-	PHS-G-CC-		
(Practical)							
	SG	Practical	Determination of		,	PHS-	20.
P Physics and the coefficient of							-
				•		F	
Statistical							
metalic rod using			•				
(Practical) an optical lever			-	(Practical)			
	SG	Practical		Thormal		рцо	21.
		Theorem			5-0-00-5-		21.
						3-P	
wethanics voltage and							
(Practical) (Practical) current of a torch			-	(Practical)			
bulb glowing it							
beyond draper							
point.							
	SG	Practical		Thormal	6 00 3 3	рцς	22.
	50	Tuetteur			-0-00-3-3-		22.
						۲	
Carey forstor			_				
(Practical) bridge.				(Practical)			
	SG	Practical	-	- Thermal	G-CC-3-3	рцс	23.
P Physics and Coefficient of		1 Taotiour			-u-u-j-j-j-		20.
				•		r	
had conductor by			-				
(Practical) Lee and				(Practical)			
Charlton's disc							
method.							
	SC.	Practical		Thormol	6 6 6 2 2	DUC	24.
	50	Tactical			-0-0-3-3-		27.
						Р	
Mechanics using Jolly's			asing joily s	Mechanics			
(Practical) apparatus.			apparatus.				

	PHS-G-CC-4-4-TH– Waves and Optics (Theory) 50 Marks / 4 Credits							
Serial No	PAPER	UNIT	ΤΟΡΙΟ	Mode of Teaching	TEACHER			
10.	PHS-G-CC-4-4- TH– Waves and Optics	Unit I: Accoustics	Review of SHM, damped & forced vibrations: amplitude and velocity resonance. Fourier's Theorem amd its application for some waveforms e.g., Saw tooth wave, triangular wave, square wave. Intensity and loudness of sound. Intensity levels, Decibels.	Lecture	SG			
11.	PHS-G-CC-4-4- TH– Waves and Optics	UnIT-2: Superposition of vibrations	Superposition of Two Collinear Harmonic oscillations having equal frequencies and different frequencies	Lecture	SG			
12.	PHS-G-CC-4-4- TH– Waves and Optics	Unit 2: Superposition of vibrations	Superposition of Two Perpendicular Harmonic Oscillation for phase difference $\delta = 0, \pi 2, \pi$: Graphical and Analytical Methods, Lissajous Figures with equal and unequal frequency and their uses.	Lecture	SG			
13.	PHS-G-CC-4-4- TH– Waves and Optics	Unit 3. Vibrations in String	(a) Wave equation in streched string and its solutions. Boundary conditions for plucked and	Lecture	SG			

1					
			struck strings.		
			Expression of		
			amplitude for		
			both the cases		
			(no derivation),		
			Young's law,		
			Ideal of		
			harmonics.		
			Musical scales		
			and notes.		
14.	PHS-G-CC-4-4-	Unit 4.	Definition and	Lecture	SG
	TH– Waves and	Introduction to	Properties of		
	Optics	wave Optics	wave front.		
			Huygens		
			Principle,		
			Electromagnetic		
			nature of light		
15.	PHS-G-CC-4-4-	Unit 5:	Superposition of	Lecture	SG
15.	TH– Waves and	Interference	two waves with	Locture	
		menerence			
	Optics		phase		
			difference,		
			distribution of		
			energy,		
			formation of		
			fringes, visibility		
			of		
			fringes.Division		
			of amplitude		
			and division of		
			wavefront.		
			Young's Double		
			Slit experiment.		
			Lloyd's Mirror		
			and Fresnel's		
			Biprism. Phase		
			change on		
			reflection:		
			Stoke's		
			treatment.		
			Interference in		
			Thin Films:		
			parallel and		
			wedgeshaped		
			Ims. Fringes of		
			equal inclination		
			(Haidinger		
			Fringes); Fringes		
			of equal		
			thickness (Fizeau		
			Fringes).		
			Newton's Rings:		
			Mewion's Kings:		

			I		[1
16.		G-CC-4-4-	Unit 6. Diffraction	measurement of wavelength and refractive index. Michelson's Interferometer (a) Idea of form of fringes (no theory needed), Determination of wavelength, Wavelength dierence, Refractive index. Fraunhofer	Lecture	SG
	TH– V Optic	Vaves and S		diffraction Single slit; Double Slit. Multiple slits and Diffraction grating.		
17.	TH– V Optic		Unit 6. Diffraction	Fresnel Diraction: Half- period zones. Zone plate.	Lecture	SG
18.			Unit 7. Polarization S-G-CC-4-4-P – Wave	Transverse nature of light waves. Plane polarized light, production and analysis. Circular and elliptical polarization. Optical ac	Lecture	SG
	PHS-C	G-CC-4-4-P	Waves and Optics (Practical)	Determination of the focal length of a concave lens by auxiliary lens method.	Practical	SG
	PHS-0	G-CC-4-4-P	Waves and Optics (Practical)	Determination of the frequency of a tuning fork with the help of sonometer.	Practical	SG
	PHS-0	5-CC-4-4-P	Waves and Optics (Practical)	Determination of radius of curvature of plano convex lens/wavelength of a	Practical	SG

		monochromatic or quasi monochromatic light using Newtons ring.		
PHS-G-CC-4-4-P	Waves and Optics (Practical)	Measurement of thickness of a paper from a wedge shaped film.	Practical	SG
PHS-G-CC-4-4-P	Waves and Optics (Practical)	Measurement of specific rotation of active solution (e.g., sugar solution) using polarimeter.	Practical	SG

	PHS-G-DSE-A-TH – Analog Electronics (Theory) 🗆 50 Marks / 4 Credits							
Serial No	PAPER	UNIT	ΤΟΡΙΟ	Mode of Teaching	TEACHER			
1	PHS-G-DSE-A- TH – Analog Electronics	Unit 1. Circuits and Network	Discrete components, Active & Passive components, Ideal Constant voltage and Constant current Sources. Network Theorems: Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity theorem, Maximum Power Transfer theorem. Applications to dc circuits.	Lecture	SG			
2	PHS-G-DSE-A- TH – Analog Electronics	UnIT-2: Semiconductor Devices	 (b) Semiconductor Diodes: P and N type semiconductors. Barrier Formation in PN Junction Diode. Qualitative Idea of Current Flow 	Lecture	SG			

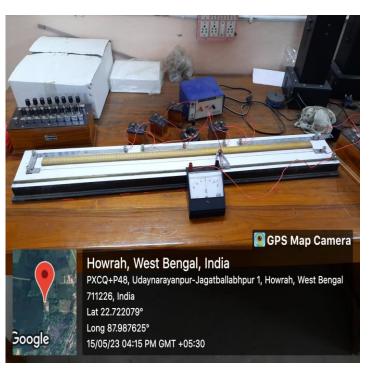
Mechanism in
Forward and
Reverse Biased
Diode. PN
junction and its
characteristics.
Static and
Dynamic
Resistance.
Principle and
structure of •
Light Emitting
Diode
Photo Diode
Solar Cell (b)
Application of
Diode: Half-
wave Rectifiers.
Centre-tapped
and Bridge Full-
wave Rectifiers,
Ripple Factor
and
Rectification
Eciency. Basic
idea about
capacitor filter.
(b) Zener Diode
and Voltage
Regulation. (c)
Bipolar Junction
transistors: n-p-
n and p-n-p
Transistors.
Characteristics
of CB, CE and CC
Congurations. Active, Cut-off &
Saturation
regions. Current
gains α and β. Relations
between them.
Load Line
analysis of Transistors. DC
Load line & Q-
point. Voltage Divider Rise
Divider Bias
Circuit for CE

			Amplier. Class A, B & C Ampliers.		
3	PHS-G-DSE-A- TH – Analog Electronics	Unit 3. Regulated Power Supply	Difference between regulated and unregulated power supply. Load regulation and line regulation. Zener as voltage regulator. Principle of series regulated power supply, IC controlled regulated power supply.	Lecture	SG
4	PHS-G-DSE-A- TH – Analog Electronics	Unit 4. Field Effect transistors	Construction, operation, characteristics,and parameters of junction FET. MOSFET (both depletion and enhancement type) as a part of MISFET. Basic structure & principle of operations and their characteristics. Pinch off, threshold voltage and short channel effect. Comparison of JFFET and MOSFET.	Lecture	SG
5	PHS-G-DSE-A- TH – Analog Electronics	Unit 4. Feedback Amplifiers	Necessity of negative feedback for stability. Voltage series, voltage shunt, current series and current shunt feedback. Change in input impedance, output impedence, voltage gain for a voltage series feedback in a voltage amplifer.	Lecture	SG
6	PHS-G-DSE-A- TH – Analog Electronics	Unit 5: Operational Ampliers	(a) Characteristics of an Ideal and Practical Op-Amp (IC 741), Open loop and closed loop Gain. CMRR, concept of	PPT	SG

			Virtual ground. Applications of Op- Amps • Inverting and non-inverting Ampliers • Inverting Adder • Subtractor • Differentiator • Integrator • Zero crossing detector		
7	PHS-G-DSE-A- TH – Analog Electronics	Unit 6. Sinusoidal Oscillators: PHS-G-DSE-A-P – Ana	Barkhausen's Criterion for Self- sustained Oscillations. Wien bridge oscillator. log Electronics (Practica	Lecture	SG
1	PHS-G-DSE-A-P	Analog Electronics (Practical)	. Veryfication of Thevenin and Norton's theorem, super position theorem and maximum power transfer theorem for resistive network fed by D.C. power supply.	Practical	SG
2	PHS-G-DSE-A-P	Analog Electronics (Practical)	Study the emitter characteristics of a photo transistor illuminated by LED.	Practical	SG
3	PHS-G-DSE-A-P	Analog Electronics (Practical)	TO study the characteristics of a Transistor in CE conguration.	Practical	SG
4	PHS-G-DSE-A-P	Analog Electronics (Practical)	Construction of a regulated power supply using LM 317 IC.	Practical	SG
5	PHS-G-DSE-A-P	Analog Electronics (Practical)	To study OPAMP: inverting amplifer, non inverting amplier, adder, subtractor.	Practical	SG

	PHS-G-DSE-B-TH– Digital Electronics (Theory) 50 Marks / 4 Credits							
Serial No	PAPER	UNIT	ΤΟΡΙΟ	Mode of Teaching	TEACHER			
1	PHS-G-DSE-B- TH– Digital	Unit 1 Integrated Circuits	Principle of Design of monolithic Chip. Advantages and	Lecture	SG			

	Electronics		drawbacks of ICs.		
	(Theory)		Scale of integration:		
			SSI, MSI, LSI and VLSI		
			(basic idea and		
			definitions only w.r.t.		
			micron/submicron		
			feature length).		
2	PHS-G-DSE-B-	Unit-2: Number	Binary	Lecture	SG
	TH– Digital	System	Numbers.		
	Electronics		Decimal to		
	(Theory)		Binary and		
			Binary to		
			Decimal		
			Conversion.		
			BCD, Octal and		
			Hexadecimal		
			numbers.		
			Signed and		
			unsigned		
			number		
			representation		
			of binary		
			system. Binary		
			addition,		
			Representation		
			of negative		
			number. 1's		
			Complement		
			and 2's		
			Complement		
			method of		
			subtraction.		
3	PHS-G-DSE-B-	Unit 3. Digital	(a) Difference	Lecture	SG
	TH– Digital	Circuits	between Analog and		
	Electronics	circuits	Digital Circuits. (b)		
	(Theory)		AND, OR and NOT		
	(Gates (Realization		
			using Diodes and		
			Transistor). NAND		
			and NOR Gates as		
			Universal Gates. XOR		
			and XNOR Gates. De		
			Morgan's Theorems.		
			(c) Switching		
			algebra, Simplication		
			of logical expression		
			using switching		
			Algebra.		
			Fundamental		
			Products and sum		
			term (p term and s		


					,
			term). Minterms and		
			Maxterms.		
			Conversion of a		
			Truth Table into an		
			algebraic expression		
			in (1) Sum of		
			Products form and		
			(2) Product of sum		
			term form.		
			Implementation of a		
			truth table by NAND		
			or NOR gate.		
			Simplification of		
			algebraic expression		
			from truth table		
			using Karnaugh Map		
4	PHS-G-DSE-B-	Unit 4. Data	Basic idea of	Lecture	SG
	TH– Digital	processing	Multiplexers, De-	200000	
	Electronics	circuits	multiplexers,		
	(Theory)	circuits	Decoders, Encoders.		
5	PHS-G-DSE-B-	Unit 5.	Introduction to Next	Lecture	SG
5	TH– Digital	Sequential	state present state	Looture	50
	Electronics	Circuits:	table, excitation		
	(Theory)	circuits.	table and truth table		
	(Theory)		for Sequential		
			circuits. SR, D, and JK		
			Flip-Flops. Clocked		
			(Level and Edge		
			Triggered) Flip-Flops.		
			Preset and Clear		
			operations. Race		
			condition in SR and		
			Race-around		
			conditions in JK Flip-		
			Flop. M/S JK Flip-		
6		Iluit (Decistere	Flop, T type FF.	РРТ	SG
U	PHS-G-DSE-B-	Unit 6: Registers and Counters	(a) Shift registers:	ЃГ I	50
	TH– Digital Electronics	and counters	Serial-in-Serial-out,		
			Serial-in-Parallel-out,		
	(Theory)		Parallel-in-Serial-out		
			and Parallel-in-		
			Parallel-out Shift		
			Registers (only up to		
			4 bits). (b) Counters		
			(4 bits):		
			Asynchronous		
			counters: ripple		
			counter, Decade		
			Counter.		
1	1		Synchronous	1	

		Counter, Ring counter.		
	PHS-G-DSE-B-P– [Digital electronics (Practical)	30 Marks / 2 Cr	edits
PHS-G-DSE-B-P	Digital electronics (Practical)	To verify and design AND, OR, NOT and XOR gates using NAND gates	Practical	SG
PHS-G-DSE-B-P	Digital electronics (Practical)	Construction of half adder, and full adder using NAND/NOR gate.	Practical	SG
PHS-G-DSE-B-P	Digital electronics (Practical)	Construction of SR, D FF circuits using NAND gates.	Practical	SG
PHS-G-DSE-B-P	Digital electronics (Practical)	Construction of 4 bit shift registers (serial & parallel) using D type FF IC 7476.	Practical	SG
PHS-G-DSE-B-P	Digital electronics (Practical)	Construction of 4 × 1 Multiplexer using IC 74151.	Practical	SG

Sd/

Soumyadev Ghosh Dept. of Physics

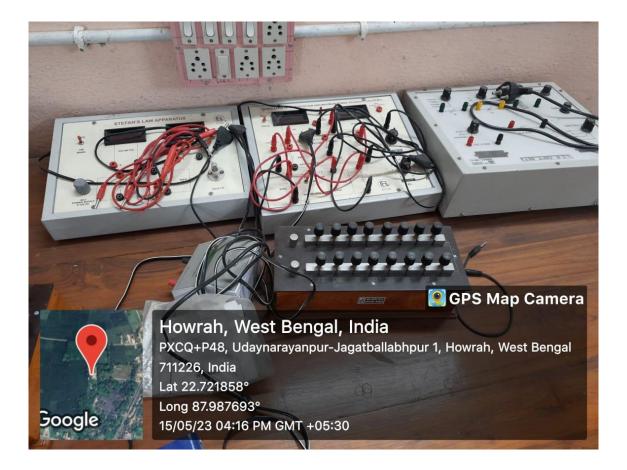
Student – Centric Method

Physics, Chemistry, Mathematics and Food & Nutrition Departments collaborated on a science-themed educational trip to Bishnupur, renowned for its historical sites, architecture, and silk weaving industry. The day trip, held on February 19th, 2020, involved student participation in several activities.

- **Meal Planning:** Students planned a travel-friendly breakfast menu for the entire group, calculating calorie, protein, and carbohydrate content.
- **Dietary Survey:** Throughout the day, students documented their meals (as a diet survey) to analyze daily calorie and nutrient intake.
- **Report Writing:** Based on the survey, students drafted reports proposing dietary modifications suitable for frequent travelers and working professionals.

This excursion provided a valuable opportunity for teamwork, exploration, and cultural immersion. Students gained firsthand experience with Bishnupur's rich heritage and conducted a dietary survey of the local population. Additionally, the trip sparked curiosity about the science underlying the town's architectural marvels.

Beyond academics, the excursion fostered teamwork, historical exploration, and a unique opportunity to study the scientific principles behind Bishnupur's architecture.



PROGRAMME OUTCOME (PO)

The undergraduate physics program fosters critical thinking in students through presentations, projects, and opportunities to develop original ideas across various physics topics. This curriculum cultivates a strong foundation in scientific thinking.

By examining scientific advancements throughout history and their reflection on social and environmental issues, the program equips students with a deeper understanding of topics like gender, sustainability, ethics, and the importance of preserving cultural heritage. This knowledge empowers them to become more informed and engaged citizens.

Furthermore, the program exposes students to the global landscape of science and technology, broadening their perspective on physics and opening doors to diverse research opportunities. By honing their ability to critically analyze scientific information, students graduate prepared for a wide range of careers that require this valuable skillset.

Course outcome

SEN 1 Theory	Depart DUC C CC 1 1 TU	Vester Alashra Ordinari
SEM-1, Theory	Paper: PHS-G-CC-1-1-TH Mechanics	Vector Algebra, Ordinary Differential Equations, Motion, Rotational Motion, Central force and Gravitation, Oscillations, Elasticity, Surface Tension,
SEM-1, practical	PHS-G-CC-1-1-P	 Determination of Moment of inertia of cylinder/bar about axis by measuring the time period, of the cradle and with body of known moment of Inertia Determination of Y modulus of a metal bar of rectangular cross section by the method of exure Determination of rigidity modulus of wire by measuring the time period of torsional oscillation of a metal cylinder attached to it. Determination of Moment of Inertia of a flywheel. Determination gravitational acceleration, g using bar pendulum.
SEM-2, Theory	PHS-G-CC-2-2-TH_ Electricity and Magnetism .	Essential Vector Analysis, Electrostatics. Magnetism,
SEM-2, PRACTICAL	PHS-G-CC-2-2-P	 Determination of unknown resistance by Carey Foster method. Measurement of a current flowing through a register using potentiometer Determination of the horizontal components of earth's magnetic field. Conversion of an ammeter to a voltmeter. Conversion of a voltmeter to an Ammeter
Sem-3 THEORY	PHS-G-CC-3-3-TH	Laws of Thermodynamics, Thermo dynamical Potentials, Kinetic Theory of Gases, Theory of Radiation, Statistical Mechanics,

Sem-3 , practical	PHS-G-CC-3-3-P	1. Determination of the
	PH3-G-CC-3-3-P	coefficient of thermal expansion
		of a metalic rod using an optical
		lever
		2. Verication of Stefan's law of
		radiation by the measurement
		of voltage and current of a
		torch bulb glowing it beyond
		draper point.
		<i>3. To determine Thermal</i>
		coefficient of Resistance using
		Carey forster bridge.
		<i>4. To determine the Coefficient</i>
		of Thermal Conductivity of a
		bad conductor by Lee and
		Charlton's disc method.
		5. Determination of the
		pressure coefficient of air using
		Jolly's apparatus.
SEM-4, THEORY	PHS-G-CC-4-4-TH	Accoustics, Superposition of
		vibrations, Vibrations in String,
		Introduction to wave Optics,
		Interference, Diffraction,
		Polarization
SEM-4, PRACTICAL	PHS-G-CC-4-4-P	1. Determination of the focal
		length of a concave lens by
		auxiliary lens method.
		2. Determination of the
		frequency of a tuning fork with
		the help of sonometer
		3. Determination of radius of
		curvature of plano convex
		lens/wavelength of a
		monochromatic or quasi
		monochromatic light using Newtons ring.
		4. Measurement of thickness of
		a paper from a wedge shaped
		film.
		5. Measurement of specific
		rotation of active solution (e.g.,
		sugar solution) using
		polarimeter.
SEM-5 THEORY	PHS-G-DSE-A-TH – Analog	Circuits and Network,
	Electronics	Semiconductor Devices,
		Regulated Power Supply, Field
		Effect transistors, . Feedback
		Amplifiers, Operational
		Ampliers, . Sinusoidal
		Oscillators
		-

SEM-5 PRACTICAL	PHS-G-DSE-A-P	 Veryfication of Thevenin and Norton's theorem, super position theorem and maximum power transfer theorem for resistive network fed by D.C. power supply. Study the emitter characteristics of a photo transistor illuminated by LED. TO study the characteristics of a Transistor in CE conguration. Construction of a regulated power supply using LM 317 IC. To study OPAMP: inverting amplifer, non inverting amplier, adder, subtractor.
SEM-6 THEORY	PHS-G-DSE-B-TH– Digital Electronics	Integrated Circuits, Number System, Digital Circuits, Data processing circuits, Sequential Circuits, Registers and Counters
SEM-6 PRACTICAL	PHS-G-DSE-B-P	 To verify and design AND, OR, NOT and XOR gates using NAND gates Construction of half adder, and full adder using NAND/NOR gate. Construction of SR, D FF circuits using NAND gates. Construction of 4 bit shift registers (serial & parallel) using D type FF IC 7476. S.

One Day National Webinar on the Modern-day Application of Material Science & Nano Technology.

Organizer: - Department of Physics & Chemistry in association with IQAC of Udaynarayanpur Madhabilata Mahavidyalaya in Collaboration with Physics & Chemistry Department & IQAC of Rabindra Mahavidyalaya

You tube link: - https://youtu.be/RsEHn_VUabs (full program is available in this link)

Program schedule for 1day national webinar on "Modern Day Application of Material Science & Nano Technology" at 11.30am-1.30pm on 10/07/2021

Inauguration session

(1) Welcome address- Dr Arabinda Ghosh, principal, UMM (11.30-11.40am)

(2) Inauguration speech – Dr Uday Kumar Khan, associate professor and HOD Physics, RM (11.40-11.50am)

Technical session

(1) Introductory speech- Tanmay Bandhyopadhyay, IQAC coordinator, RM(11.50-11.55am)

(2) Introductory speech – Sreemoyee Banerjee, IQAC coordinator, UMM(11.55-12.00Noon)

Main Session

Lecture - 1(12.00-12.30pm)

Dr Swarup Kumar Neogi

Assistant Professor, Department of Physics, Adamas University, Kolkata

(Session chairperson, Dr Amit Maity, Department of Chemistry, UMM)

Lecture-1 Question-answer session (12.30-12.40)

Lecture - 2(12.40-1.20pm)

Dr Sachindranath Das

Assistant professor, Department of Instrumentation Science, Jadavpur University, Kolkata

(Session chairperson- Dr Safiul Alam Mollick, Assistant Professor of physics, RM)

Lecture-2 Question- Answer Session (1.20-1.28pm)

Valedictory Session

Vote of Thanks – Snehasree Saha, Assistant Professor of Food & Nutrition, Umm (1.28-1.30pm)

• Participant can post their query at the chat-box